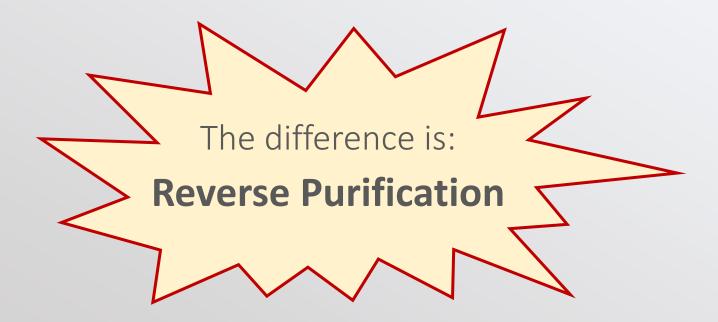


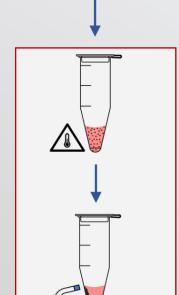
SwiftX™ DNA – Re-thinking the use of magnetic particles


SwiftX™ DNA – what is the difference?

Classical purification kits:

- 1. Lysis of cells or particles
- 2. <u>Binding of nucleic acids</u> to magnetic particles
- 3. Removal of cell debris
- 4. Elution of nucleic acids

SwiftX DNA (tissue, swabs, cells):


- 1. Lysis of cells and viruses
- 2. <u>Binding of cell debris</u> to magnetic particles

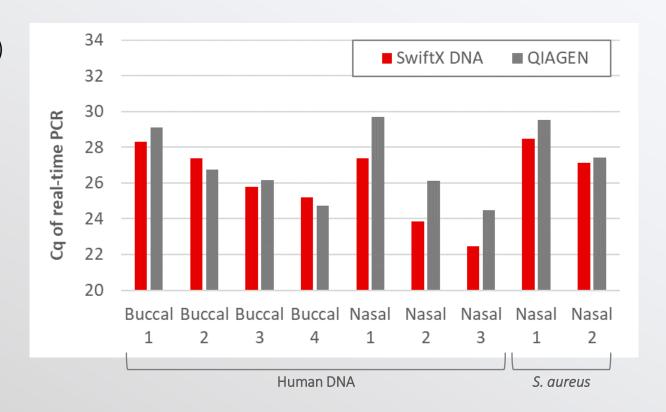
SwiftX[™] DNA – Protocol 1

tissues, cells, swabs

Heat-driven lysis of cells and virus particles

Binding of cell debris to magnetic particles

Cleared lysate ready for downstream application


- Add Buffer DL & Beads A
- 5-10 minutes at 95°C
- Lyses viruses, bacteria, parasitic protozoa, animal & human cells
- 1 minute magnetic separation
- Removal of cell membranes, proteins and other impurities

- Realtime PCR, isothermal amplification
- Genotyping, DNA arrays
- Sequencing

SwiftX™ DNA – Direct and rapid extraction of:

- Swabs (e.g. buccal⁽¹²⁾, nasal⁽¹²⁾, pharyngeal⁽¹²⁾, rectal)
- Pre-concentrated cells^(9,12)
- Dried blood spots, blood cards
- Tissue samples (e.g. skin^(1,3), muscle, liver, brain⁽²⁾)
- Fine-needle aspirates⁽³⁾
- Tissue fluid⁽³⁾, cerebrospinal fluid
- Hair follicles, tongue scrapings

References

- Chowdhury et al. (2020) Trop. Med. Infect. Dis. 5: 95
- Schlottau et al. (2017) Virology Journal 14: 184
- Gunaratna et al. (2018) Parasites & Vectors 11: 665
- Mondal et al. (2016) Parasites & Vectors 9: 281
- Burke et al. (2016) J. Microbiol. Methods 129: 103
- Archer et al. (2020) Molecules 25: 4175
- Hansen et al. (2019) Diagnostics 9: 36
- Wende (2014) NDWG Annual Meeting
- Ademowo et al. (2019) Trans. R. Soc. Trop. Med. Hyg. 113: S59 10. Rostron et al. (2019) Parasite & Vectors 12: 514

- 11. WO2017067942A1
- 12. Internal data
- 13. Frimpong et al. (2021) Acta Tropica 216: 105847
- 14. Archer et al. (2022) PLOS NTD

SwiftX™ DNA – One kit two protocols

SwiftX DNA (solid samples):

Lysis of cells or particles

<u>Binding of cell debris</u> to magnetic
particles

SwiftX DNA (liquid samples):

Binding of cells to magnetic particles

Removal of non-cellular matter

Lysis of cells or particles

Binding of cell debris to magnetic particles

liquid specimens, homogenized tissue

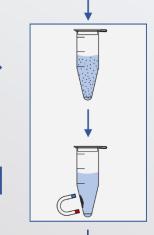
Binding of cells to magnetic particles

Removal of none-cellular matter and cell concentration

Heat-driven lysis of cells and virus particles

Binding of cell debris to magnetic particles

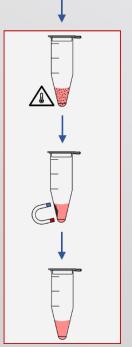
Cleared lysate ready for downstream application


SwiftX[™] DNA – Protocol 2

- Add Buffer EN & Beads A
- 3 minutes incubation
- Binds bacteria, parasitic protozoa, animal & human cells
- 1 minute magnetic separation
- Removal of liquid including impurities
- Add Buffer DL
- 5-10 minutes at 95°C
- Lyses viruses, bacteria, parasitic protozoa, animal & human cells
- 1 minute magnetic separation
- Removal of cell membranes, proteins and other impurities
- Realtime PCR, isothermal amplification
- Genotyping, DNA arrays
- Sequencing

SwiftX[™] DNA – Protocol 3

Additional wash step for complex liquids such as whole blood



liquid specimens, homogenized tissue

Binding of cells to magnetic particles

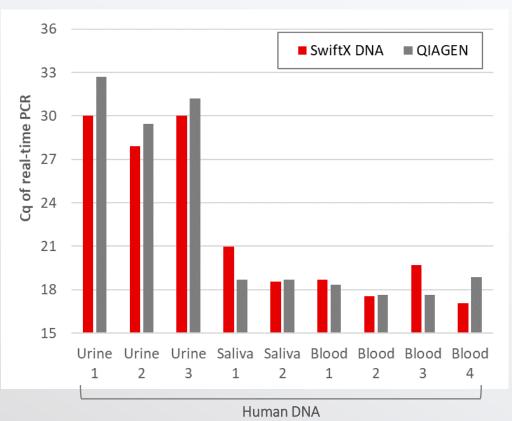
Note: red blood cells do not bind to the magnetic particles

Removal of none-cellular matter and cell concentration

Heat-driven lysis of cells and virus particles

Binding of cell debris to magnetic particles

Cleared lysate ready for downstream application



SwiftX™ DNA – Cell concentration and rapid extraction of:

- Whole blood^(4,5,6,11,12) (up to 200μL sample)
- Urine(7,10,13) (up to 1mL sample)
- Saliva⁽¹²⁾, throat washes
- cells in culture medium⁽¹²⁾, samples in transport media⁽¹²⁾
- Homogenized tissue suspensions⁽²⁾
- Vaginal lavage⁽¹⁴⁾, liquid-based cytology media⁽¹²⁾

Magnetic particles-based concentration of:

- Human and animal cells (leukocytes⁽⁴⁾, epithelial cells⁽¹²⁾, nervous tissue⁽²⁾)
- Parasites (Leishmania^(1,3,4), Plasmodium⁽⁵⁾, Schistosoma $eggs^{(7,10,14)}$
- Bacteria (Mycoplasma⁽¹²⁾, Mycobacteria^(8,9), Listeria⁽¹²⁾, Proteus⁽¹²⁾, Escherichia⁽¹²⁾, Salmonella^(5,11), Streptococcus^(6,11), Acinetobacter⁽¹²⁾, Staphylococcus (11,12), Rhodococcus (12), Leptospira (12), Klebsiella (12))

- Chowdhury et al. (2020) Trop. Med. Infect. Dis. 5: 95
- Schlottau et al. (2017) Virology Journal 14: 184
- Gunaratna et al. (2018) Parasites & Vectors 11: 665
- Mondal et al. (2016) Parasites & Vectors 9: 281
- Burke et al. (2016) J. Microbiol. Methods 129: 103
- Archer et al. (2020) Molecules 25: 4175
- Hansen et al. (2019) Diagnostics 9: 36
- Wende (2014) NDWG Annual Meeting
- Ademowo et al. (2019) Trans. R. Soc. Trop. Med. Hyg. 113: S59 10. Rostron et al. (2019) Parasite & Vectors 12: 514

- 11. WO2017067942A1
- 12. Internal data
- 13. Frimpong et al. (2021) Acta Tropica 216: 105847
- 14. Archer et al. (2022) PLOS NTD

SwiftX™ DNA – What are potential applications

Workflow	Specimen (examples)	Target / Organism
Protocol 1	 swabs tissue biopsies low volume of fluids (serum, CSF, aspirate) dried blood spots hair follicles 	 viruses intra- and extracellular bacteria intra- and extracellular protozoa animal & human cells
Protocol 2	 urine saliva, throat washes, BAL cell cultures cerebrospinal fluid transport media Vaginal lavage Swab suspensions 	 viruses within intact cells intra- and extracellular bacteria intra- and extracellular protozoa animal & human cells
Protocol 3	whole bloodtissue suspensionsliquid-based cytology media	 Viruses as well as intracellular bacteria and protozoa in white blood cells, epithelial cells or nerv tissue extracellular bacteria and protozoa animal & human cells

SwiftX™ DNA – Scientific literature and internal data

- Extraction of Leishmania from skin biopsy (Protocol 1)
- Concentration of Rabies virus from brain homogenate (Protocol 3)
- Extraction of Leishmania from skin biopsy (Protocol 1) 3.
- Concentration & extraction of Leishmania (in monocytes) from whole blood (Protocol 3)
- Concentration & extraction of Plasmodium & Salmonella from whole blood (Protocol 3)
- Concentration & extraction of Streptococcus from whole blood (Protocol 3)
- Concentration & extraction of Schistosoma eggs from urine (Protocol 2)
- Concentration & extraction of Mycobacterium from stool (Protocol 3, pre-treatment with bead-beating)
- Extraction of Mycobacterium from cell concentrate (Protocol 1)
- Concentration & extraction of Schistosoma eggs from urine (Protocol 2)
- Concentration & extraction of Salmonella, Streptococcus, Staphylococcus from whole blood (Protocol 3)
- 12. Concentration & extraction of
 - human cells from nasal and buccal swabs (Protocol 1)
 - human cells from saliva and urine (Protocol 2)
 - HPV from vaginal swabs in transport media (Protocol 2)
 - ASFV from oral fluid and oral-nasal swabs in transport media (Protocol 2)
 - human cells from whole blood (Protocol 3)
 - HPV from cervical swabs in LBC media (Protocol 3)
 - Various bacteria from cell culture (Protocol 3)
- 13. Extraction of Schistosoma from urine cell pellets (Protocol 1)
- 14. Concentration & Extraction of Schistosoma eggs from cervico-vaginal lavage (Protocol 2)

References

- Chowdhury et al. (2020) Trop. Med. Infect. Dis. 5: 95
- Schlottau et al. (2017) Virology Journal 14: 184
- Gunaratna et al. (2018) Parasites & Vectors 11: 665
- Mondal et al. (2016) Parasites & Vectors 9: 281
- 5. Ademowo et al. (2019) Trans. R. Soc. Trop. Med. Hyg. 113: S59 10. Rostron et al. (2019) Parasite & Vectors 12: 514
- Burke et al. (2016) J. Microbiol. Methods 129: 103
- Archer et al. (2020) Molecules 25: 4175
- Hansen et al. (2019) Diagnostics 9: 36
- 9. Wende (2014) NDWG Annual Meeting

- 11. WO2017067942A1
- 12. Internal data
- 13. Frimpong et al. (2021) Acta Tropica 216: 105847
- 14. Archer et al. (2022) PLOS NTD

SwiftX™ DNA – as versatile as your research

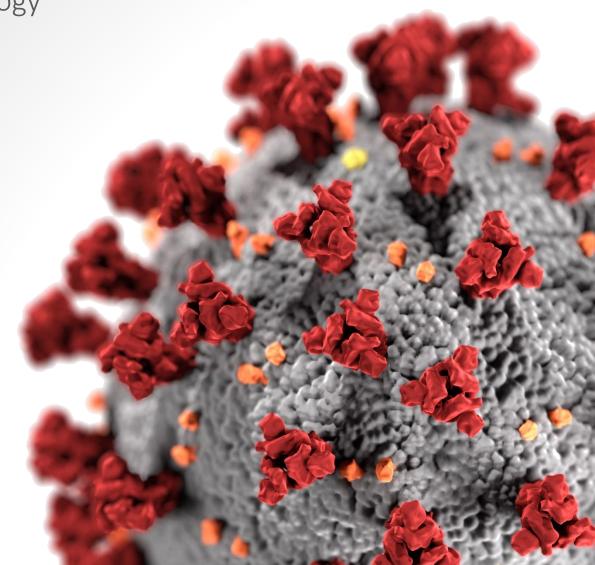
Application to tissues and hair follicles:

Extraction efficiency can be enhanced using Proteinase K

Application to large volume urine samples:

Sample volume can be increased up to 20 mL using additional Buffer EN

- > Equal in performance to QIAGEN SpeedXtract Nucleic Acid kit (discontinued)
- > Applied by scientists around the world (see academic publications)


SwiftX™

A family of tailor-made solutions in molecular biology

www.xpedite-dx.com
info@xpedite-dx.com

